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Automatic recognition of behavioral context (location, activities, body-posture etc.) can serve health monitoring, aging care,
and many other domains. Recognizing context in-the-wild is challenging because of great variability in behavioral patterns,
and it requires a complex mapping from sensor features to predicted labels. Data collected in-the-wild may be unbalanced
and incomplete, with cases of missing labels or missing sensors. We propose using the multiple layer perceptron (MLP) as a
multi-task model for context recognition. Based on features from multi-modal sensors, the model simultaneously predicts
many diverse context labels. We analyze the advantages of the model’s hidden layers, which are shared among all sensors
and all labels, and provide insight to the behavioral patterns that these hidden layers may capture. We demonstrate how
recognition of new labels can be improved when utilizing a model that was trained for an initial set of labels, and show how
to train the model to withstand missing sensors. We evaluate context recognition on the previously published ExtraSensory
Dataset, which was collected in-the-wild. Compared to previously suggested models, the MLP improves recognition, even
with fewer parameters than a linear model. The ability to train a good model using data that has incomplete, unbalanced
labeling and missing sensors encourages further research with uncontrolled, in-the-wild behavior.
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1 INTRODUCTION
The behavioral context of a person can be described by various aspects: where is the person? what kind of
activities is the person doing? who is with the person? what is the body-posture state? and so on. Automatic
recognition of behavioral context can serve many applications, such as monitoring physical activity [2], logging
older adults’ functional independence to promote aging at home [8], and context-adaptive personal assistant
systems. In order for such applications to work well in-the-wild, meaning in real life settings, the context
recognition component should be seamlessly integrated. Ideally, people will conduct their regular daily behavior,
while the non-interfering system recognizes what is going on using unobtrusive sensors, and every-day devices,
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like smartphones. If the system requires wearing an uncomfortable or unnatural sensor, it may cause the person
to act di�erently, thus missing the goal of recognizing natural behavior.

In-the-wild human behavior has great variability and the system should not fail if the person takes the phone
out of the pocket, exits a monitored room, or enters an elevator. Behavioral context is rich and complex: people
walk, eat, or interact with their phones in di�erent manners and typically do not focus on a single activity, like
watching TV; they may watch TV while eating, cooking, or hanging out with friends. An activity like running
can have di�erent �avors: outside, indoors on a treadmill, at the gym, at home, alone, with friends, and so on.
Applications that monitor physical activity will have to overcome this variability and recognize that people are
running in all these di�erent cases. Other in-the-wild applications may focus on social interaction, exposure to
fresh air, or other aspects of daily life.

Many studies promoted great progress in processing sensor measurements to recognize basic human activity.
However, most of these studies conducted controlled experiments. They handed foreign devices to research
participants, with instructions for how to use them. Participants came to designated locations (typically a lab) on
scheduled time and researchers observed them conducting scripted tasks. Unfortunately, such studies missed the
great variability of natural behavior by scripting what to do and by forcing speci�c positioning on the body of
devices (e.g. phone in the pocket or accelerometer on the hip). In these cases, the repeated simulations typically
resulted in little variability among participants, making the recognition task easier than it should be. This means
that models that worked well with simulated activities may fail in-the-wild [5]. In addition, many of the suggested
systems in these works were not practical for in-the-wild usage because of inconvenient sensing apparatus or
classi�cation methods that are not �t for real-time or mobile applications.

This is why it is important that research in the �eld validates context recognition in-the-wild — in the same
setting where real applications will eventually be deployed. In our previous work [21] we stated that when
collecting data, researchers can promote natural behavior by maintaining four in-the-wild conditions: (1) naturally
used devices, (2) unconstrained device placement, (3) natural environment, and (4) natural behavioral content.

We strongly believe that when analyzing data and suggesting methods, researchers should consider models
that are appropriate for working in-the-wild. Behavioral models should be able to learn complex mappings from
sensor measurements to the predicted contexts, while avoiding over-�tting to the training data. These models
should be e�cient enough to work on real-time, mobile applications. They should also work well with data
that is not controlled and may be irregular, incomplete, and unbalanced: when relying on many participants to
collect data from their daily lives, not everyone will contribute examples of cooking, driving, and so on; some
participants may provide information about their activity, while ignoring other aspects like their environment.
In addition, in-the-wild models should be able to work even when some of the sensors are missing.

In this paper, we introduce the use of multiple layer perceptron (MLP) as a multi-task model to recognizes
rich descriptions of context, including details about environment, activities, body-posture, company, and more.
We evaluate context recognition using the ExtraSensory Dataset1, a publicly available large-scale in-the-wild
dataset that we previously described in [21]. We demonstrate how our model is useful in practical scenarios.
The contribution of this paper is the introduction of a context-recognition model that improves recognition
in-the-wild compared to the baseline suggested in [21], and addresses the following important considerations for
in-the-wild research:

• The output of our MLP model is multi-label, meaning multiple context-labels can be relevant simul-
taneously. This allows for holistic descriptions of context that may include combinations of activities
(like watching TV while eating), as well as environment, body-posture, and other aspects. This is a
more appropriate way to describe behavior than the previous multi-class approach, where the model

1The ExtraSensory Dataset is publicly available here: http://extrasensory.ucsd.edu
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predicted a single activity at any given time. We discuss the advantage of sharing parameters in a uni�ed
multi-task model.
• Our model can handle data with incomplete and unbalanced labeling. We achieve this by training

with multi-label instance-weighting. This is important when collecting large in-the-wild data, where it is
hard to control the distribution of labels.
• We demonstrate how the model facilitates transfer learning — it can help when collecting new data

and extending the system to a new behavioral aspect. This is especially useful when there is limited data
for the new labels and researchers want to take advantage of an existing system that was already trained
to predict initial labels.
• We show that training with sensor-dropout can make the model resilient to missing sensors. This is an

important property for in-the-wild systems — they should keep working smoothly, even when some of
the information sources become unavailable.

2 THE EXTRASENSORY DATASET
Before diving into the discussion of the recognition model we present in this paper, it is important to contextualize
our work with respect to the data we use for evaluating context recognition. The data was fully described in our
previous work [21], and we provide a brief description in this section. For collecting the data, we designed and
implemented a mobile application (for iPhone and for Android, with an additional Pebble-watch component) that
recorded a 20sec window of sensor measurements (from the phone and watch) every minute when the app was
running in the background. The �exible user interface of our app provided many mechanisms for participants
to self-report their context in terms of what they were doing, where they were, who they were with, where
their phone was, and so on. Among the mechanisms, they could report immediate future (up to thirty minutes)
context, edit context labels for past events from the day, use the watch to respond to noti�cations, and more. This
�exibility was important to minimize the interference that reporting labels had on the actual natural behavior.
When collecting the data, we considered the four key conditions for natural behavior in-the-wild:

(1) Naturally used devices: Participants used their own personal smartphone. We supplied an additional
smartwatch, which is natural to wear and adds little burden. In [21] we showed how adding information
from the watch can improve recognition. Here, we show how to reduce the reliance on extra devices, like
the watch.

(2) Unconstrained device placement: Participants were free to use their phone in any way convenient to them.
We collected annotations regarding that aspect — participants sometimes reported labels describing the
phone position (e.g. “Phone in pocket”; “Phone in hand”) in addition to other contextual aspects. This
allow us in this paper to jointly model device placement together with other aspects and better capture
variability in-the-wild.

(3) Natural environment: Each person participated for approximately one week. They collected data from
their own environment and on their own schedule. This enables capturing diverse contexts that could not
be simulated in lab experiments. This also resulted in technical challenges, like many cases when some
sensors were not available. In this paper, we address such cases as examples of what a real application
may have to face, and we make our model more resilient to missing sensors.

(4) Natural behavioral content: We did not specify a list of tasks to perform or activities to focus on. Instead,
we provided an extensive menu of over 100 behavioral attributes (context labels), and the option to
select multiple labels simultaneously (multi-label setting). The participants engaged in their routine, and
reported any labels that were relevant to their context. This method contributed to the authenticity of
each individual’s behavior, but it also made the data harder to manage, having incomplete and unbalanced
labeling. In this paper, we show how to manipulate the MLP in a non-standard fashion to handle this
kind of irregular data.
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The resulting ExtraSensory Dataset is publicly available and has over 300,000 labeled examples from sixty
participants. Every example represents one minute and has measurements from various sensors on the phone
and watch. Our intial analysis focused on six core sensors [21]: phone-accelerometer (Acc), phone-gyroscope
(Gyro), phone-audio (Aud), phone-location (Loc), phone-state (PS), and watch-accelerometer (WAcc). Acc and
Gyro are both 3-axial and were sampled in 40Hz. WAcc is 3-axial and was sampled at 25Hz. Audio was recorded
at 22,050Hz and then processed on the phone to produce thirteen Mel Frequency Cepstral Coe�cients (MFCCs)
for every 46msec frame. Location was updated whenever there was a signi�cant change. PS was sampled once a
minute. From each sensing modality we extracted appropriate features, totaling 175 di�erent features across
multiple modalities. Speci�cally, from the motion sensors (Acc, Gyro, WAcc) we calculated simple statistics,
axes-correlations, and spectral features; the audio sensor features are based on averages and standard deviations
of MFCCs; from the location modality, we focused on relative-location, describing the variability of movement
within a minute, plus estimates of altitude and speed; the phone state sensor features are binary indicators,
specifying details like app-state, WiFi connectivity, and time-of-day.

The dataset also demonstrates a practical challenge in-the-wild: missing sensors. The watch was not worn all
of the time, participants sometimes turned o� location services to conserve battery, and audio was not available
to our app during a phone call (to preserve privacy). Furthermore, only approximately half of the examples had
all the six core sensors available.

Every labeled example in the dataset is annotated in a multi-label fashion — a combination of relevant labels,
describing various aspects of the behavior, like the activity (e.g. “Computer work”, “Cooking”, “Drive — I’m the
driver”), environment (e.g. “At home”; “At school”; “Outside”; “On a bus”), company (e.g. “With friends”), and
body-state (e.g. “Lying down”; “Walking”). In addition, the dataset demonstrates a variety of label-combinations
that were reported by participants, describing detailed contexts, like “Running, Indoors, Exercise, At the gym,
Phone on table” or “Sitting, On a bus, Phone in pocket, Talking, With friends”. For reporting these rich contexts,
participants selected multiple relevant labels from a large menu. This method accounted for two important
contributions:

(1) It helped ensure that participants engaged in their individual authentic behavior, without trying to
conform to any given list of activities.

(2) It provides us with much richer descriptions of context and the opportunity to research di�erent behavioral
aspects and their relations.

On the other hand, this method resulted in incomplete and unbalanced labeling, with each participant contributing
information about a small subset of the labels in the menu. Some labels (e.g. “Sleeping”) were more represented
than others (e.g. “Washing dishes”).

In the remainder of the paper we discuss related work, describe our classi�cation model based on MLP, and
present results of applying the model to di�erent scenarios, evaluated on the ExtraSensory Dataset (with validation
on an additional dataset). We then discuss the results, suggest future improvements, and conclude the paper.

3 RELATED WORK
In this section we address previous research that used MLP as a tool for context recognition, both in controlled
studies (3.1) and outside of the lab (3.2), and di�erentiate our work from those studies. We survey various
approaches to modeling multiple aspects of context and previous methods to extend systems to new contexts (3.3),
and we describe how previous studies have addressed missing input data (3.4). Finally, we regard to the important
issue of performance metrics and how they impact the conclusions of research, especially with in-the-wild data
that is skewed and unbalanced (3.5).
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3.1 Off-the-shelf tools in controlled studies
Several studies have used MLP and other models as black-box tools to recognize activities from mobile sensors.
Mantyjarvi et al. [12] used two acceleromenters on the waist to recognize four body movements. Kwapisz et al. [7]
targeted six body states and used a built-in accelerometer in a smartphone that was placed in the participants’
front pant pocket. They compared di�erent models, including logistic regression, decision tree, and MLP. Guiri
et al. [4] used more diverse sensors from a phone (placed in the pocket) and a watch, and distinguished nine
physical activities. They compared �ve o�-the-shelf models, including MLP. Pirttikangas et al. [16] designed
a small device with multi-modal sensors. In their study they placed four such devices in speci�c positions on
the body, plus a data collection terminal on the arm. They tested recognizing seventeen speci�c tasks using
k-nearest-neighbors (kNN) and MLP.

Although these studies contributed greatly to methods for processing sensors across di�erent modalities, their
data was collected under heavily controlled conditions: Researchers handed foreign devices to the participants
and placed them in speci�c body positions. Participation was done in designated locations and on scheduled
time. The behavior itself was scripted and instructed, which may result in simulated, un-natural behavior with
little variability among participants.

Models that �t well to such controlled data may generalize poorly in-the-wild [5]. K-nearest-neighbors is an
example of a model that is not appropriate for in-the-wild applications but was still suggested. The apparent
success of kNN in some controlled studies [16, 19] may rely heavily on the fact that repeated simulations of
activities can be very similar: to classify a new example, kNN searches the training set for examples with similar
sensor measurements; these can easily be found if all the participants repeat the same script and wear the sensors
in the same position. In-the-wild, however, such a model can fail. Also, kNN requires retaining many examples
and comparing them to every new example. This scales badly to larger training sets and is not practical for
mobile or real-time applications. Additionally, when conducting these controlled experiments, researchers made
sure that their datasets will be nicely balanced and that all required sensors were used. For such well crafted
datasets, o�-the-shelf classi�cation tools may be appropriate. That may not be the case when collecting data
in-the-wild, especially at a large scale.

3.2 Getting out of the lab
Natarajan et al. [13] worked on using wearable Electrocardiography sensors to detect cocaine use. They addressed
problems that arise when training classi�ers on lab data and validating them on data from the �eld (in-the-wild).
These problems include two types of distribution shifts from lab data to �eld data: prior probability shift, referring
to class distribution (“cocaine use” vs. “not cocaine use”) and covariate shift, referring to the distribution of
sensor features. For both these problems, their solution involved training the model on the lab data using
instance-weights that compensate for the distribution shifts and adapt the model to the distribution of the target
domain (�eld). They also addressed the di�culty in collecting reliable ground truth labels in-the-wild, and decided
to process the �eld data in a day-by-day granularity (unlike the �ve-minute windows in their lab data).

Ermes et al. [3] addressed some aspects of in-the-wild behavior. They followed their in-the-lab scripted data
collection with an additional phase, where participants roamed freely and self-reported their behavior using
a personal digital assistant (PDA) device. The labeling interface enabled selecting combinations of physical
activity (one out of nine), location (indoors, outdoors, or vehicle), and indication of eating vs. not-eating. For
recognizing the physical activity, they suggested a model that incorporates domain knowledge — a human-crafted
decision tree structure that de�ned a hierarchical clustering of the activities. They added machine learning to the
model — each decision in the tree was resolved with an MLP. The tree structure was able to represent similarity
and grouping relations among the labels. However, hand crafting such a structure depends on the researchers’
assumptions, which may not hold in real life, especially when device placement is not controlled. Also, it is hard
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to scale such a structure to a wider range of labels or to contexts that involve multiple labels simultaneously, like
sitting while watching TV. Finally, and most importantly, the sensing apparatus that they used was unnatural
and inconvenient (it included wires that connected the sensors to a carried box).

Khan et al. [6] provided a phone to the participants and let them collect data in their natural environments
for one month. For classi�cation, they tried using support vector machine (SVM), Gaussian mixture models
(GMM), and MLP, with or without kernel-discriminant-analysis (KDA) for feature transformation that reduces
dimensionality and enhances discriminability. For KDA, they regarded within-class and between-class variability,
so they relied on the multi-class formulation of behavior — where every example was assigned a single activity.

3.3 Transfer learning
Some studies described settings that have di�erent types of context-labels, but did not model their interaction.
Shoaib et al. [19] started with “simple” activities (body movements) and then extended their experiments to
“complex” activities (e.g. smoking, typing). However, their scripted activities were repeated by participants, so they
missed the rich variability of real-life behaviors; For instance, they did not simulate the combination “smoking
while sitting”.

Rossi et al. [17] collected sound clips, available on the web, that were annotated with tags describing locations
(e.g. beach, o�ce), inanimate objects (e.g. bus, washing machine), and live entities (e.g. speech, dog). However,
they only assigned a single tag to each clip, missing combinatorial contexts, like “man speaking to dog at the
beach”. They also modeled each label with a separate GMM, potentially missing common relations, e.g. washing
machine and dishwasher may produce similar sounds.

The ExtraSensory Dataset [21] contains labels describing di�erent aspects and includes rich combinatorial
contexts — on average every example was annotated with more than three di�erent labels. However, in the
baseline system we initially proposed in [21], every label was modeled separately. The system was based on
linear classi�ers (logistic regression) and we focused the reported results on 25 labels for which recognition was
successful. The separate model-per-label system missed the dependencies among related labels. This may have
caused many labels with relatively few examples to have poor recognition; for instance, recognizing “Washing
dishes” may be improved if it were modeled together with “At home”.

Other works utilized transfer learning and explicitly modeled sharing information from one set of labels
to another. Zheng et al. [23] used unsupervised learning to discover common behavioral patterns in a home
environment, equipped with binary state-change sensors. They used a growing self-organizing map method to
construct hierarchical clustering of the training examples. Such an approach can be used to expand an existing
model to new data and capture new behaviors. Seiter et al. [18] described using topic modeling to discover new
contexts — common temporal-sequences of “activity primitives”. Pirsiavash et al. [15] collected data of daily
activities from participants at their home with video recordings from a chest mounted camera. They annotated
the recorded images for objects (where multiple objects can appear at the same scene) and actions (one out of
eighteen). For low level recognition (object detection) they trained a separate model per object. Finally, they
used predictions from these object-detectors to form a bag-of-objects histogram representation, and used it for
classifying actions. In [15, 18, 23], the direction of transfer learning was clearly de�ned — there was explicit
partition to lower-level and higher-level contexts. Such methods are less �tting in cases where there is not a clear
hierarchy among labels.

3.4 Missing input data
Previous works evaluated recognition with di�erent combinations of sensors by training a separate system for
each combination [4, 19]. In [21], we evaluated single-sensor systems as well as sensor-fusion systems that use all
six sensors. In-the-wild, it is likely that the combination of available sensors will be constrained by the situation:
the participant may decide to turn o� a power-hungry resource (like location service) or to remove a watch, or
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one of the sensors can temporarily not work. To make sure the recognition system keeps working in such cases,
a naïve option is to pre-load it with trained classi�ers for di�erent combinations of sensors, but this solution
scales badly to many sensors.

Ngiam et al. [14] demonstrated the utility of learning a joint representation for two modalities — facial video
and audio — for speech classi�cation. They showed how a shared model can work well even with the absence
of one modality. Mallidi et al. [11] worked on speech recognition where some of the input streams (spectral
sub-bands) are distorted by noise. They showed that instead of training a separate model for each combination
of streams, a single uni�ed model, trained with stream-dropout, can capture di�erent scenarios and work well
when selecting the subset of less-noisy input streams. Lipton et al. [10] faced the real-world limitation of missing
input data. They worked on prediction of clinical diagnosis in an intensive care unit. Their input was a collection
of measurements that were taken at di�erent rates: blood pressure was typically measured once an hour but
urine samples could be taken once a day. They represented the data as time-series of hours, which resulted in
many time points that had only part of the input values. They compared di�erent ways to address the missing
values, including zero-imputation, keeping the value from the most recent measurement, and adding missing-data
indicators as input features.

3.5 Measuring recognition performance
When evaluating recognition for many labels with unbalanced data (as is the case with ExtraSensory Dataset),
the performance metrics make a big di�erence. In [21] we discussed why the naïve accuracy is a misleading
metric for unbalanced labels, and why it is important to balance the trade-o� between competing metrics, like
sensitivity and speci�city. A common approach is to observe the sensitivity (recall) against precision or use
their harmonic mean (F1). However, precision and F1 are very sensitive to class skew. This makes it hard to
interpret F1 since chance level itself can be very small for rare labels. Moreover, in the multi-label setting, when
applying micro-average or macro-average, the summarized score can present undesirable and inconsistent trends:
under-emphasizing or over-emphasizing the rare labels. This e�ect can result in misleading conclusions when
comparing two systems [9]. Ward et al. [22] addressed these issues and suggested metrics that partition false
negative rate (1-sensitivity) and false positive rate (1-speci�city) to describe �ner types of errors. In such metrics
(as well as sensitivity and speci�city) the denominator has ground-truth counts (e.g. in sensitivity it is the count
of ground-truth-positive), which makes them una�ected by the class skew in the data. This is unlike precision,
where the denominator is the count of predicted-positive. A convenient way to consider both sensitivity and
speci�city is simply to average them, resulting in the balanced accuracy metric [1], whose chance level is always
0.5. Balanced accuracy (BA) can be viewed simply as a fair (balanced) version of accuracy. As in [21], we focus
on BA (averaged over labels) as a fair metric of performance.

4 OUR CONTRIBUTION
In this paper, we use the MLP as a model for context recognition, but instead of using it as a black-box tool,
as done in [4, 7, 12, 16], we manipulate it to �t uncontrolled in-the-wild data. We adjust the MLP’s objective
function in a non-standard fashion to handle unbalanced, incomplete labeling. Similar to [13], we train with
instance-weighting to neutralize the e�ect of the skewed class distributions in the training set, but here we work
with a multi-label setting, so instead of a single weight per example, we coordinate weights for each example-label
pair. We also describe transfer learning by copying parts from one MLP into a new MLP to extend prediction to
new labels, and sensor-dropout to make the MLP robust to missing sensors. In MLP, unlike the hand-crafted label
taxonomy in [3], the relations among di�erent labels are not explicitly de�ned, but rather implicitly learned from
the data and represented in the hidden layers. Unlike kNN [16, 19], MLP has a model size (and test run-time) that
does not depend on the number of training examples, so it can be stored on a mobile device, and it is �tting for
real-time applications.
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Same as done in [21], we evaluate multi-label classi�cation over the ExtraSensory Dataset. However, unlike the
separate-model-per-label system we proposed in [21], here we perform multi-task learning and model all the
predicted labels in a single MLP. We demonstrate the utility of sharing the same learned hidden representation
among the labels. The resulting MLP works like a set of logistic regression classi�ers (one per context-label)
whose input is a common learned representation with reduced dimensionality (similar to [6]). The MLP’s learned
hidden representation is driven by supervised training, which acts as learning both the representation and the
classi�ers at the same time. This is di�erent from the two-stage approach in [6], where they �rst used KDA to
learn a representation, and then trained an SVM classi�er.

Similar to [15], we demonstrate a transfer learning scenario where we start by learning good representations
for predicting a basic set of labels, and then using these representations to classify another set of labels. Unlike
[15, 18, 23], we o�er a more �exible model: a researcher can either construct a fully multi-task MLP and train
it with all labels together or can start by modeling one subset of labels and later extend to another. Unlike the
unsupervised discovery of new contexts in [18, 23], we stay in the realm of supervised learning. Finally, we
address the need for the system to work well with arbitrary subsets of available sensors. Our treatment of missing
sensors is similar to the stream-dropout used in [11] or the simple zero-imputation used in [10], but we make
sure to normalize the total contribution of the available sensors at every example. The model that we suggest in
this paper addresses all these issues pertaining to research in-the-wild, making it a more �t model. To support it,
we evaluate the model with data that was collected in-the-wild.

5 METHODS

5.1 Multi-task multiple layer perceptron
Our recognition model is based on multiple layer perceptron (MLP) — a feed-forward neural network that has
hidden layers, in addition to the input features and output labels. It processes an input feature vector x ∈ Rd
with a sequence of J a�ne transforms, each followed by an element-wise nonlinear activation function. This
allows all the sensor-features to be mixed together in a non-linear transformation (the �rst J − 1 stages) to form
a hidden representation, which is then shared for linearly-predicting all the labels (in the last a�ne transform).
Unlike the model-per-label in [21], here we train a multi-task model, with multiple outputs for a whole set of L
binary labels. Previous studies used MLP for the multi-class setting, where the purpose was selecting a single
activity (the one with highest probability output) out of a set of mutually-exclusive options [3, 4, 7, 12, 16]. Here,
we work with the richer multi-label setting, where multiple labels can be classi�ed as positive simultaneously.
For the hidden layers, we use a leaky recti�ed linear unit as activation: д(v) = max[ v10 ,v]. For the output layer,
we use the logistic function (sigmoid): д(v) = 1

1+e−v , to produce valid probability-outputs. The actual binary
predictions are achieved by thresholding the continuous outputs by 0.5.

Formally, we can represent an MLP as a function f : Rd → [0, 1]L . For convenient notation, we de�ne the
function f as processing a batch of N examples, f : RN×d → [0, 1]N×L (although every example is processed
independently of the others). This function is parametrized by the free parameters of the model — the weight
matrix and bias vector of each a�ne transform:

Θ = {Wj ,bj } Jj=1 (1)

Training is done over a training set of N examples that have sensor features and incomplete labeling (for every
example there is information about part of the labels). We denote the training set with the feature matrix
X ∈ RN×d , the ground truth labels matrix Y ∈ {0, 1}N×L , and the missing-label matrix M ∈ {0, 1}N×L . To train
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the model, we de�ne the following optimization problem:

min
Θ

(
1
NL

N∑
i=1

L∑
l=1

Ψi,lc(f (X )i,l ,Yi,l )
)
+ λφ(Θ) (2)

For every example i and label l , the entry’s prediction cost is the traditional cross entropy loss:
c(ỹ,y) = − (y log(ỹ) + (1 − y) log(1 − ỹ)) (3)

As a regularization term, we selected φ(Θ) to be the total Frobenius norm of the weight matrices of the model.
This optimization problem is an instance-weighted version of maximum a posteriori probability (MAP) estimation,
where φ(Θ) accounts for the prior.

The nontraditional element here is the instance-weighting matrix Ψ. For entries (i, l) that are regarded as
“missing label” (Mi,l = 1), Ψi,l is set to zero, to make sure this example-label pair contributes nothing to the total
cost. The other entries are normalized for each label l by their class (positive or negative), with weights that
are inversely proportional to the frequency of that class for this label in the training set. As a result, for every
label, the total contribution of the positive examples is equal to the total contribution of the negative examples.
Instance-weighting is a common practice when training a single-output binary classi�er, where every example
gets a single weight according to its class. Ψ is a generalization of that practice to multi-label — it coordinates
the positive/negative balance for all the outputs. This weighting is very important because our data is very
unbalanced: generally, there are more negative examples than positive examples, and for every label the ratio
is di�erent. Without the weighting matrix, the learned model tends to be trivial — always declaring “no” for
most labels. The weighting matrix also incorporates the missing label information, which enables training a
multi-task model when the data has incomplete labeling. In this way, for instance, an example that only provides
information about body-state (“Walking”, “Sitting”, etc.) can still contribute its share to the training: we do not
have to throw it away because it does not specify environment information (“Outside”, “At home”, etc.).

In all our experiments, we used early fusion of the sensors (the input layer is the 175 features from the six
sensors). Training was done using gradient descent with back-propagation, for forty epochs, with mini-batch size
of 300 examples. The learning rate was linearly decreasing at every epoch, from 0.1 to 0.01. We used momentum
with weight 0.5.

5.2 Data preparation
For evaluating our model, we use our ExtraSensory Dataset [21]. We follow the same evaluation as done in [21]:
We perform �ve-fold cross validation using the same partition of the sixty participants to �ve folds. We use the
same six core sensors and the same d = 175 extracted sensor-features. We standardize each feature according to
the mean and standard deviation estimated from the training set.

In [21], every example-label entry was treated as either positive or negative. For this paper, we further processed
the ground truth labels and added a representation of “missing label information”. During data collection the
participant could only report positive labels by selecting the relevant labels from the large menu. The original
analysis assumed that whenever a label was not marked, it was not relevant to the example. Here, we applied
several common sense rules to infer when it is better to treat an entry (example-label pair) as missing rather than
negative (see supplemental material for details). This label-cleaning may get rid of some actual negative examples,
but the resulting labeling is more reliable. This is more crucial for the labels that were reported less, and may
have been overlooked by many participants. For this paper, we calculate performance metrics by counting correct
classi�cations and errors only over non-missing entries.
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6 EXPERIMENTS AND RESULTS
We begin our experiments with the full multi-task MLP — one that is trained with all the labels. We compare
it to the baseline system (referred to as early-fusion in [21]) — a separate logistic regression model per-label;
here we refer to this baseline system as LR. We analyze the recognition performance, and the size of the di�erent
models (number of parameters). We then provide additional control experiments, to examine the contribution of
the various techniques employed by the system. We also provide deeper analysis of trained models to better
understand what the multi-task MLP learns. Next, we present experiments of transfer learning, where we extend
the model to new labels, and for making the MLP robust to missing sensors. Finally, we validate our model on an
additional dataset and report similar results.

6.1 Multi-task MLP
The basic experiments here are with a multi-task MLP that predicts L = 51 context labels simultaneously. In [21],
the main results focused on 25 labels with successful recognition. Here, we jointly model all these labels together
with additional 26 labels that got poorer results with the baseline system. We evaluate di�erent architectures of
MLP, with no hidden layers (the linear case), or with one or two hidden layers of di�erent widths.

When training a model, to select values for the hyper-parameters, we employ an internal validation procedure:
The training set is partitioned to 70% internal-training-set and 30% internal-validation-set. With a grid-search over
possible hyper-parameter values, we train on the internal-training-set and test BA on the internal-validation-set.
We select the hyper-parameter values that yield highest validation-BA, and use them to re-train the model
over the entire 100% of the training set. For each separate label-model in the LR system, the grid-search
values for the hyper-parameter Cloдist were

{
10−6, 10−5, . . . , 102

}
, and the 70%/30% partition of the training

examples was done while maintaining the ratio between positive and negative examples. For MLP with a speci�c
architecture, the grid-search values for the hyper-parameter λ were {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1},
and the 70%/30% partition of the training examples was done randomly, because there was no way to guarantee
the same positive/negative ratio for all the 51 labels. In addition, we perform experiments where the depth of the
MLP (one or two hidden layers) is �xed, but the grid-search is done to select both λ and the dimension of the
hidden layers (width), among {2, 4, 8, 16, 32}.

Table 1 presents recognition performance, including the baseline system from [21] (LR). As discussed in [21],
the performance metrics for the LR system show that the accuracy metric is mostly dominated by the speci�city
(since there are many negative examples). The accuracy almost ignores the sensitivity (since there are fewer
positive examples), hence it is misrepresenting the quality of the system. Switching to the linear-MLP causes
a decrease in speci�city but a much greater improvement in sensitivity. The balanced accuracy (BA) metric
appropriately captures this overall improvement. Both the LR and linear-MLP systems solve similar optimization
problems. However, in the MLP system, we use a single uni�ed value for the balancing hyper-parameter (λ) for
all the labels, unlike LR, where we tuned the hyper-parameter (Cloдist ) separately for every label. The di�erence
in performance can indicate that this tuning caused the LR system to over-�t (indeed, the last two columns of
table 1 show that the LR system had a larger gap between train performance and test performance).

Adding a hidden layer to the MLP introduces nonlinearity and dimensionality reduction to the model. When
the features are extremely compressed (only two hidden nodes), BA decreases. With a wider bottleneck hidden
layer, the MLP can express richer relations and performance increases. Adding a second hidden layer is another
way to increase the expressiveness of the MLP. When selecting an architecture (e.g. width and depth of MLP),
researchers should observe the competing performance metrics (or use a “fair” combination, like BA), but should
also consider the model’s size — the number of parameters (we specify the size of each model in the �rst column
of table 1). The linear models in our experiments require tuning and representing 8,976 parameters (including
weights for all the combinations of 175 features and 51 labels). A bottleneck hidden layer can greatly shrink the

PACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 1, No. 4, Article 1. Publication date: December 2017.



Context Recognition In-the-Wild:
Unified Model for Multi-Modal Sensors and Multi-Label Classification • 1:11

model: for example, with a single hidden layer of sixteen nodes (MLP (16)) the total number of parameters is 3,683
(175 × 16 = 2, 800 fromW1, 16 from b1, 16 × 51 = 816 fromW2, and 51 from b2), which is less than half the linear
model’s size. Having a smaller model is an optimization constraint that can help prevent over-�tting. MLPs with
one or two hidden layers of 64 nodes are larger (have more parameters) than the linear model, and indeed we see
that these large MLPs are more prone to over-�tting: their recognition performance on the training examples
(train-BA column) is higher than for the other MLPs, while their test performance (BA column) is lower than
for smaller MLPs. Generally, it seems that the smaller the model size, the smaller the train-test gap (“BA gap”
column). This can explain the advantage of moderately-sized MLPs that have enough expressiveness to predict
51 labels, while having less parameters than the linear model.
Summary of results: These basic experiments show the superiority of the MLP over the baseline. MLP

manages to capture good predictive mappings from sensors to many diverse labels, all in a concise representation.
By selecting a moderately-sized architecture (large enough, but no more parameters than the linear model), we
can balance the trade-o� between capturing many contexts and generalizing to unseen data. The improved
recognition compared to the linear system can be attributed to the nonlinearity and the dimensionality reduction
in the bottleneck hidden layers. The improvement can also be explained by the fact that we model all the labels
with a shared structure, unlike the separate model-per-label in the baseline.

size accuracy sensitivity speci�city BA train-BA BA gap
LR 8976 0.832 0.597 0.838 0.718 0.875 0.158
MLP (linear) 8976 0.760 0.746 0.757 0.752 0.813 0.061
MLP (2) 505 0.666 0.773 0.661 0.717 0.735 0.017
MLP (4) 959 0.730 0.773 0.727 0.750 0.773 0.023
MLP (8) 1867 0.776 0.768 0.775 0.772 0.806 0.035
MLP (16) 3683 0.781 0.755 0.781 0.768 0.820 0.052
MLP (32) 7315 0.799 0.736 0.800 0.768 0.847 0.079
MLP (64) 14579 0.806 0.687 0.808 0.747 0.865 0.118
MLP (d) ? 0.799 0.736 0.800 0.768 0.847 0.079
MLP (2,2) 511 0.662 0.759 0.656 0.707 0.736 0.029
MLP (4,4) 979 0.707 0.769 0.707 0.738 0.763 0.025
MLP (8,8) 1939 0.761 0.772 0.759 0.766 0.803 0.037
MLP (16,16) 3955 0.773 0.773 0.773 0.773 0.817 0.044
MLP (32,32) 8371 0.805 0.729 0.807 0.768 0.845 0.078
MLP (64,64) 18739 0.817 0.661 0.823 0.742 0.877 0.135
MLP (d,d) ? 0.805 0.729 0.807 0.768 0.845 0.078

Table 1. Recognition scores reported for baseline system (LR — logistic regression per-label), and for the multi-task MLP
(either linear or with the dimensions of the hidden layers in parenthesis). For each network we specify its size — the number of
free parameters (including weight matrices and bias vectors). MLP (d) represents a model with a single hidden layer, where
the hidden dimension is selected via internal validation among {2, 4, 8, 16, 32}. MLP (d,d) represents a model with two hidden
layers, where the hidden dimension used for both layers is selected via internal validation among {2, 4, 8, 16, 32}. For MLP (d)
and MLP (d,d), the architecture can be different for each test fold, so the model size is not determined. Scores are averaged
over all the 51 labels. For balanced accuracy (BA), the last two columns report the score measured on the training examples
(train-BA) and the gap between training and test performance (BA gap), to assess the level of over-fitting.
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6.2 The performance gain
The multi-task MLP adds nonlinearity, hidden layers, dimensionality reduction, and sharing of parameters (among
labels), all in one supervised-learning framework. In this section, we describe control experiments, to better
understand which of these techniques contribute to the gain in performance.

Instance-weighting: We stated that instance-weighting is especially important when the training data is
very unbalanced. Both the baseline (LR) and the multi-task MLP we presented already employ instance-weighting.
To account for the importance of this technique, we conduct corresponding experiments without instance-
weighting (for the MLP experiment, this means that Ψ simply has binary values — indicating for each entry if
it is non-missing: Ψ = not(M)). Table 2 shows the results with and without instance-weighting. The baseline
LR system (with instance-weighting, �rst row in tables 1 and 2) has some discrepancy: it has much better
performance for negative examples (speci�city) than positive examples (sensitivity). However, when training LR
without using instance-weighting, this discrepancy is much more severe, and the fair metric of balanced accuracy
demonstrates this degradation. For multi-task MLP with two hidden layers of sixteen nodes, we observe a more
drastic e�ect, demonstrating how crucial instance-weighting is for unbalanced multi-label datasets. Without
instance-weighting, the resulting models optimize the raw accuracy, which makes them neglect the rare cases
(positives) and produce almost-trivial classi�ers.

accuracy sensitivity speci�city BA
LR 0.832 0.597 0.838 0.718
LR, no instance-weighting 0.918 0.256 0.940 0.598
MLP (16,16) 0.773 0.773 0.773 0.773
MLP (16,16), no instance-weighting 0.935 0.145 0.959 0.552

Table 2. Effect of instance-weighting. LR and MLP with two hidden layers of sixteen nodes, for each — performance with and
without instance-weighting.

Nonlinearity and hidden layers: To examine whether non-linearity and hidden layers are the main contrib-
utors to the improvement of the multi-task MLP, we experiment with systems that have separate MLPs per label,
with one or two hidden layers of one, two, or four nodes. These systems add the richness of MLP to each label’s
model, allowing it to express more complicated mappings from features to the target label, but they do not share
information among labels. For each label, the value of λ was selected via internal validation and grid search over
[0.0001, 0.0005, 0.001, 0.005].

Table 3 shows the results of these experiments. All of the separate MLP per-label systems performed roughly
at the same level as the baseline LR system, meaning that the added non-linearity and hidden layers did not add
much improvement, certainly not enough to compete with the multi-task MLP. This approach to increasing the
richness of the system comes at the price of over-�tting. Without shared parameters, each label’s separate model
has to grow, causing the size of the whole system to blow up. This adds much richness to the overall system, as
seen by the increasing BA on the training set. However, there is too much richness (too many parameters) and it
causes the system to severely over-�t: BA train-test gap increases with increasing model size.

Parameter-sharing: We can compare the MLP-per-label systems to a multi-task MLP with comparable size
(number of parameters), for example the “MLP (1) per label” system has a total of 9,078 parameters, close to the size
of the multi-task “MLP (32,32)”. According to this criterion, we already saw that multi-task MLPs with comparable
sizes outperform an MLP-per-label system. Another comparison criterion is the node-wise architecture — the
number of hidden layers and hidden nodes: A multi-task MLP with a hidden layer of 51 nodes (shown in table 4)
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size accuracy sensitivity speci�city BA train-BA BA gap
MLP (1) per label 51 × 178 = 9078 0.837 0.601 0.845 0.723 0.881 0.158
MLP (2) per label 51 × 355 = 18105 0.830 0.622 0.837 0.729 0.889 0.160
MLP (4) per label 51 × 709 = 36159 0.843 0.576 0.850 0.713 0.919 0.206
MLP (1,1) per label 51 × 180 = 9180 0.832 0.605 0.839 0.722 0.880 0.158
MLP (2,2) per label 51 × 361 = 18411 0.825 0.620 0.831 0.726 0.900 0.174
MLP (4,4) per label 51 × 729 = 37179 0.852 0.553 0.863 0.708 0.924 0.216

Table 3. Effect of non-linearity and hidden layers. In the per-label experiments, each label has a separate MLP model.

has the same node-wise architecture as the “MLP (1) per label” system (the di�erence is in the connectivity among
the nodes), and a multi-task MLP with two hidden layers of 51 nodes has the same node-wise architecture as
the “MLP (1,1) per label” system. According to this criterion as well, when comparing a separate-MLP-per-label
system to a comparable multi-task MLP, the multi-task MLP performs better. This indicates that the sharing of
parameters is bene�cial for the model.

size accuracy sensitivity speci�city BA train-BA BA gap
MLP (51) 11628 0.803 0.719 0.806 0.762 0.855 0.093
MLP (51,51) 14280 0.803 0.712 0.805 0.759 0.857 0.099
Table 4. Multi-task MLPs with node-wise architecture that is compmarable to an MLP-per-label system.

Shared representation with dimensionality reduction: One feature of the multi-task MLPs that we ana-
lyze here is dimensionality reduction. Having a hidden layer with smaller dimension than the input-features
contributes to reducing the number of parameters to get better generalization. In the MLP, the hidden rep-
resentation (with the reduced dimension) is learned together with the classi�ers/output layer via supervised
learning. An alternative is to learn a representation using unsupervised learning. Here, we examine the most
basic unsupervised method to learn a reduced dimension representation — principal component analysis (PCA).
We estimate (over the training set) the PCA projection of the features to di�erent reduced dimensions, and
then train a linear-MLP from the projected representation to the output labels (with validation-selection of
λ ∈ [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1]).

Figure 1 shows the results with PCA dimensionality reduction to di�erent dimensions, as well as the corre-
sponding multi-task MLPs with a single hidden layer of the same dimension. With increasing PCA-dimension,
performance increases and reaches the linear system with the full dimension — MLP (linear). This means that
dimensionality reduction alone does not contribute to gain in performance. On the other hand, training a
multi-task MLP with a single hidden layer results in better reduced-dimension representations, which contributes
to better performance.

Summary of results: All the di�erent techniques combined in our suggested multi-task MLP contribute to
improved performance. Instance-weighting is crucial to avoid trivial classi�cations. Non-linearity (through hidden
layers) alone is not enough to improve performance of separate per-label models. The sharing of parameters is
important to allow for rich mappings while avoiding too many parameters. Finally, even a shared representation
and dimensionality reduction are not enough to provide the full performance gain (as seen in the PCA experiment);
Supervised learning of all the layers makes sure we learn a good (useful) hidden representation — a representation
that carries important information for predicting the labels.
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Fig. 1. Dimesionality reduction. Comparing reducing dimension by PCA to a hidden layer of a multi-task MLP.

6.3 Interpreting the multi-task MLP
In order to better understand what is learned in the multi-task MLP, we analyze a model with a relatively small
architecture — two hidden layers of two nodes (MLP (2,2)). Using the trained model from one of the cross
validation folds, we process the fold’s ∼130k training examples. We observe the activations of hidden nodes to
examine what kind of examples cause a node to “turn on” (have high activation value) and try to characterize the
“meaning” of the node. We focus on the two nodes in the second hidden layer (the layer right before the output).
For each node, we �nd the ∼52k (40%) low-activation-examples — those that caused the lowest activation values
for that node, and the ∼13k (10%) high-activation-examples — those that caused the highest activation.

In �gure 2, we examine the input sensor-features (after they were standardized over the whole training set): we
look at average feature values of the low-activation-examples and high-activation-examples for selected features.
Features for which there is a strong contrast between the low-activation and high-activation examples give
indication about what the hidden node is sensitive to — what kind of information it encodes. From the second
hidden layer, node-1 (top sub-�gure) seems to be activated by situations that involve relatively constant and
low-magnitude motion of the phone (Acc magnitude signal has low average and standard deviation), strong watch
motion only in the y-axis (e.g. lateral rotation of the arm while the hand keeps facing a table), low diameter of
location, WiFi availability, and time-of-day between 9am and 3pm. On the other hand, node-2 (bottom sub-�gure)
is associated with higher and more �uctuating phone motion, strong motion in all axes of the watch, large
location diameter and no WiFi availability.
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Fig. 2. Sensor-features and hidden node activation. For each of the two hidden nodes and for a selected subset of input
features, the bars describe the average standardized feature value among the examples that cause low activation in the node
(blue) and among the examples that cause high activation in the node (green).

In �gure 3, we examine the context-labels by looking at the frequency of each label among the low-activation-
examples and high-activation-examples. Both node-1 and node-2 respond with low activation to many examples
of lying down, sitting, sleeping, indoors, home, and phone on table. However, their activation patterns di�er
in some behavioral aspect: node-1 is more responsive than node-2 to sitting, in a meeting, at main workplace,
computer work, at school, and phone on table. Node-2 responds more to walking, running, bicycling, outside, in
a car, drive, phone in pocket, and exercise.

From these observations, we can describe the multi-layer hidden representation in a more human-interpretable
manner: simplistically, node-1 detects “sedentary o�ce-style context”, and node-2 detects “moving around
outside”. The supervised training needs to distribute the limited resources (the hidden nodes) in a way that is
most predictive for the many context-labels. MLPs with wider hidden layers (e.g. with four, eight, or sixteen
nodes) can re�ne the representation and each hidden node can represent a more speci�c situations. This can help
cover more possible contexts. If the MLP has a too wide hidden representation (e.g. 64 nodes), the training can
result in nodes that capture too-speci�c cases that only occur in the training set (over-�tting), causing the MLP
to make mistakes on unseen data.
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Fig. 3. Context-labels and hidden node activation. For each of the two hidden nodes the bars describe the frequency of each
context-label among the examples that cause low activation in the node (blue) and among the examples that cause high
activation in the node (green).

6.4 Transfer learning for new labels
In this section, we simulate a practical scenario that may occur in research. In the scenario, researchers �rst
collect labeled data targeting a starting-set of labels and train a basic context recognition system to predict these
labels. Later on in the scenario, the researcher wish to extend their system to recognize a new-set of labels,
addressing a di�erent behavioral aspect that they did not have in mind earlier, so they collect additional labeled
data for the new-set of labels. We examine whether we can use transfer learning, to take advantage of the
already-trained model, when training the new model for the new-set of labels.

In the following experiment, we �rst train an MLP (with two hidden layers of sixteen nodes) to predict a
starting-set of Ls labels. Next, we train a new MLP (also with two hidden layers of sixteen nodes) to predict a
new-set of Ln new labels (the complement set, out of the 51 labels in the paper). For the new-set we have three
options:

(1) Fresh: Start from scratch, meaning randomly initialize the entire network and train it.
(2) Copy: Copy the �rst two a�ne transforms (W1,b1,W2,b2) from the starting-set MLP, replace the last

a�ne transform (the one closest to the output —W3,b3) with a new one. Then train the entire network.
(3) Copy-freeze: Construct the new network same as in the Copy option, but when training, freeze the

copied components, and only update the parameters of the new last transform,W3,b3.
In the multi-task MLP experiment presented earlier, with the MLP (16,16) architecture, the internal-validation
procedure consistently (for the �ve folds) selected the value λ = 0.001, so for the transfer learning experiment,
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we use a �xed value of λ = 0.001. The two training phases in these experiments (starting-set and new-set) are
never exposed to the explicit co-occurrence of labels from the starting-set and the new-set.

Intuitively, it may seem better to fully optimize the new network for the new labels, but if the new data
is limited this can cause over-�tting. In that respect, utilizing the starting-set MLP can act as a “warm-start”
regularization.

We examine three sets of labels to act as the new-set (for each, the starting-set is all the other labels, among
the 51):

• Body-state: {“Lying down”, “Sitting”, “Standing”, “Walking”, “Running”, “Bicycling”}.
• Home-activities: {“Cooking”, “Cleaning”, “Doing laundry”, “Washing dishes”, “Grooming”, “Dressing”}.
• Environments: {“In class”, “In a meeting”, “At main workplace”, “At home”, “At a restaurant”, “At a bar”,

“At a party”, “At the beach”, “At the gym”, “At school”}.
A new-set MLP still has a multi-label output and it can still be regarded as multi-tasking. However, here we reserve
the name “multi-task MLP” to the full 51-label model, which predicts many labels across di�erent behavioral
aspects.

Table 5 presents the results from these experiments. The basic option of training a new MLP with the new
data (Fresh) achieves some improvement compared to LR. This can be the result of the added nonlinearity,
dimensionality reduction, and sharing information among the labels of the new-set. The Environments set has a
wider range (10 labels), which may explain the signi�cant improvement. When utilizing the �rst few levels of the
starting-set MLP as a starting point for training (Copy), there is another slight improvement. However, it seems
that when updating the entire new network with the new label set, the model can “forget” what it already learned
before and lose the advantage of the richer starting data. The option of maintaining the previously learned
hidden representation and only updating the output level (Copy-freeze) works as a stronger regularization on
the training for the new-set, preventing it from losing what was already learned. Indeed, this option shows a
stronger improvement in performance. The Copy-freeze option reaches similar level of performance as the full
multi-task MLP (trained for 51 labels), even though the multi-task MLP had an advantage of being trained with
more information — the full combinations of all the labels.
Summary of results: These experiments show that there is a clear advantage of sharing a model (through

the hidden layers of an MLP) among labels. The shared model helps boost recognition of new labels both when
the model is trained with all the data (with the old and new labels together) and when the new labels appear
in separate data. It is possible that the researchers collecting the new data do not have access to the full data
from the starting-set of labels, but they only have the trained model for the starting-set (e.g. if they received the
trained model from other researchers). In such a case, they can still take advantage of the old data indirectly,
through the concise structure of the trained model.

new-set MLP (16,16)
new-set LR Fresh Copy Copy-freeze multi-task MLP (16,16)
Body-state 0.771 0.778 0.783 0.803 0.801
Home activities 0.647 0.654 0.657 0.718 0.722
Environments 0.735 0.788 0.791 0.799 0.801

Table 5. Transfer learning to new labels. BA scores averaged over the new set of labels. Reported scores for LR, and for MLP
(with 2 hidden layers of dimension 16). MLP for the new-set (new-set MLP (16,16)) was trained with either the Fresh, Copy, or
Copy-freeze option. Multi-task MLP (16,16) was trained with all 51 labels (but scores are averaged only on the new-set labels).
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6.5 Missing sensors
A practical system that works in-the-wild has to face situations where some sensors may be missing. In our data
collection, we naturally encountered such cases. Most notably, the participant sometimes turned o� location
services to conserve battery, and sometimes removed the watch, for convenience. The average-probability
late-fusion method presented in [21] has the potential to handle such cases by averaging the prediction outputs
for the sensors that are currently available. However, the late-fusion approach misses the opportunity to model
correlations between features of di�erent sensors. In our MLP, where all the sensors’ features are presented in
the input layer, there is the potential for sensors to learn from each other. To handle missing sensors with the
MLP, we suggest the dropout technique in a structured manner: the input features of the missing sensor(s) are
set to zeros, and the features of the available sensors are multiplied by an appropriate weight to keep the total
contribution of the input features in a standard level. For example, if four out of the six sensors are available, we
multiply their features by 6

4 . During training, for every mini-batch, we randomly mask some sensors as “missing”
— independently masking each example-sensor entry with probability pdrop .

Dropout was originally presented as a method to avoid over-�tting and train more robust networks that do
not rely too much on speci�c nodes [20]. Traditional usage of dropout is for training alone, and it expects all
the input features to be available at recognition time. In [11], the authors applied dropout also at recognition
time: their system attempted di�erent combinations of input streams, and used performance-monitoring metrics
to identify the less noisy combinations. Similarly, we also wish to use a single network to handle all di�erent
scenarios of available input streams (sensors, in our case); and we also employ dropout only on the feature
layer, in structured blocks of features. However, unlike [11], our motivation is to handle cases where sensors
are actually missing; and our system uses all the available sensors at recognition time, instead of selecting a
less noisy subset of sensors. In [21], the early fusion classi�ers were trained with only the examples that had all
the six sensors. Here, the formulation of how to handle missing sensors enables us to use the full training data,
including examples that were collected with missing sensors.

In this experiment, we again use the MLP (16,16) architecture, and again, we �x λ to a value of 0.001. Table 6
presents BA scores for training with and without sensor-dropout. The basic MLP (�rst row) was trained with
all sensors available (hence, was limited to use only the core subset of the training examples). This MLP is not
so sensitive to the lack of signal from Acc or Gyro, indicating that these two sensors carry a less unique signal,
which can be recovered from other sensors. It is much more reliant on the phone-state modality (PS) — without
PS there is a large drop in performance. Fortunately, this is the cheapest source of information — these indicators
are readily available on the phone’s operating system, so there is no practical concern of missing PS. On the other
hand, it is very reasonable to be in a situation where WAcc, Loc, or Aud is missing. These three modalities also
contribute important information to the system (missing one of them reduces performance).

Training with dropout (with pdrop = 0.2, second row) generates a more robust MLP, that generalizes slightly
better when all six sensors are available (per-label scores for this robust MLP are provided in supplementary
material). More importantly, the dropout-MLP can better withstand any missing sensor, and reach performance
closer to when having input from all sensors. We also evaluated two speci�c scenarios, when only three sensors
are available, that can reasonably occur in practical applications. Both scenarios simulate that the extra device
(watch) is missing and the power-hungry location service is turned o�. AGP uses only accelerometer, gyroscope,
and phone-state and AAP uses only accelerometer, audio, and phone-state. In both these cases training with
sensor-dropout improves the performance.
Summary of results: These experiments demonstrate that some sensors are very important for successful

recognition and show that with proper training (using sensor-dropout), the model can be more resilient to losing
these sensors.
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5 sensors (all except one) 3 sensors
Training 6 sensors Acc Gyro WAcc Loc Aud PS AGP AAP
core examples, no dropout 0.773 0.771 0.770 0.753 0.763 0.746 0.737 0.704 0.733
all examples, dropout 0.780 0.778 0.777 0.764 0.770 0.763 0.757 0.730 0.748

Table 6. Handling missing sensors. Balanced accuracy (averaged over the 51 labels) scores. Tested on the core examples
(those that have all six sensors) with all sensors available, with simulating one missing sensor, and with simulating specific
reasonable combinations of sensors: AGP represents Acc, Gyro, and PS; AAP represents Acc, Aud, and PS. All experiments
are with MLP with 2 hidden layers of dimension 16. Models were trained either on core examples without dropout (first row), or
with all training examples with dropout (second row). For likely scenarios of missing sensors, performance with dropout is
marked in gray.

6.6 External validation
In order to further validate our suggested model, we apply it to an additional dataset. Pirsiavash and Ramanan
collected the “Activities of Daily Living (ADL)” dataset and published it with their analysis paper [15]. The dataset
contains images from a chest mounted camera from twenty participants engaged in free daily living activities in
their own homes. The images were annotated for objects and actions (brushing teeth, making co�ee, watching
TV, etc.).

We perform the action-recognition task that they describe in [15], where each item is a pre-segmented clip
annotated with a single action out of eighteen. We report average accuracy (average of the binary-recall over the
eighteen actions). We repeat the same processing stages, including using the object detection scores from 26 object
models, and calculating temporal pyramid to produce a 78-dimensional feature vector for each clip. As baseline,
we used the original linear SVM (one vs. rest) multi-class classi�er. We experiment with our multi-task MLP, with
slight modi�cations to apply it to a multi-class problem: we add a “softmax” activation at the output (normalizing
the eighteen output probabilities to form a categorical distribution over the eighteen actions); we represent the
ground truth of a clip as a vector of 0s with only a single 1 value for the relevant action; when classifying a clip,
we report the action with highest output value. For MLP, we experiment with a linear model (zero hidden layers),
or with one or two hidden layers of various dimensions. We use a �xed value of λ = 0.001. Because this dataset
has fewer examples than the ExtraSensory Dataset (203 pre-segmented clips), we replicate training examples to
approximate 100 per action (same as in Pirsiavash’s experiments) and use smaller mini-batches of 10 examples.
All experiments were done with leave-one-participant-out over participants 7–20, and participants 1–6 were only
used to validate the choice of hyper-parameters.

Figure 4 shows the results. Again, we see that a multi-task MLP can out-perform a linear model (including
the SVM). We see the same trends as with the ExtraSensory Dataset: adding shared hidden layers increases the
richness of the system, causing gain in performance, but up to a certain limit. When increasing the hidden
dimension further, performance decreases (as a result of over �tting). Again, we see that a good measure for
the tendency to over-�t is the model size, where a good reference point to compare to is the size of the linear
model (vertical dashed line in �gure 4). Same as in our previous experiments, here we see that the models that
performed best have less parameters than the linear model.
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Fig. 4. Activities of Daily Living (ADL) dataset. Performance of the baseline from [15] (SVM) and linear-MLP are presented
in flat horizontal lines. Performance of multi-task MLPs with one hidden layer (purple squares) or two hidden layers (blue
triangles) are shown with the hidden layer dimensions next to each point. Models are arranged on the x-axis according to their
size (number of parameters). As reference, the vertical dashed line marks the size of the linear models (SVM and linear-MLP
each have 1,422 parameters). The plots show that a multi-task MLP can outperform linear models, when it has “wide enough”
hidden layers (8, 12 nodes), but still “narrow enough” to keep the model size smaller than the linear model.

7 DISCUSSION
In order to address in-the-wild behavior, research needs to better represent it. The traditional multi-class approach,
which selects a single activity from a small set of mutually-exclusive options, is a naïve way to describe behavior.
On the other hand, the multi-label approach, where multiple labels can apply simultaneously, provides more
richness and allows to describe behavioral context as a combination of multi-dimensional aspects: people do not
just “sit” but rather “sit at school, doing computer work”; “sit at a bar with friends”; or “sit at home, with family,
watching TV”. Having a multi-task model, like the MLP we present here, enables modeling the complexity and
richness of in-the-wild behavior.

The multi-task MLP employs various techniques that are essential to its performance gain, as seen by our
extensive experiments:

• Instance-weighting is crucial to avoid trivial classi�ers that neglect rare contexts.
• Non-linearity and hidden layers are not enough. They certainly add richness (increasing performance

on the training set) but when applied to separate per-label models the added richness results in severe
over-�tting. Parameter-sharing across labels is needed to make the overall system generalize well to
unseen examples.
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• Parameter-sharing and dimensionality reduction are also not enough to get the full gain. Unsupervised
methods to learn a hidden representation (like PCA) only care about capturing statistics of the input-
features. In the multi-task MLP, the supervised training of all the layers makes sure that the hidden
representation captures relevant information for predicting the output-labels.

The multi-task MLP has �exibility to learn interesting inter-label dependencies without the guiding hand of the
researcher. Potentially, labels with strong recognition (or with many examples) can help boost the performance
of related labels that have weaker recognition when modeled separately. Some sets of labels, like {“Indoors”,
“Outside”}, have clear relations, and it makes sense to jointly model them. The model may implicitly learn
co-occurrence patterns, like “Sleeping” mostly occurs in conjunction with “At home”. The learned hidden
representation may dedicate hidden nodes to complex concepts that are strongly associated with multiple labels
— the analysis in section 6.3 demonstrates a node that captures “o�ce-style context” (associated with indoors,
sitting, and computer work).

Di�erent people engage in di�erent contexts. Some like to cook while others prefer eating out; some drive to
work every day while others bike; some hang out with friends at bars while other prefer to stay home and watch
TV. The multi-task model can extract the similar patterns between di�erent contexts and their di�erences. The
training methods we present in this paper enable using data from di�erent people, where each person contributes
to some contexts while ignoring others.

The transfer learning experiments highlight the advantage of sharing information in a uni�ed model, even
among labels that describe di�erent aspects of behavior (activities vs. environments vs. body posture, etc.). These
results are also encouraging for the practice of building context recognition systems: if data collection is done
in phases addressing di�erent target labels, the new system can rely on a previously trained system — this
is especially important if the new data is smaller in size compared to the starting-data. Depending on the
amount of previous and new data, researchers have the �exibility to balance the impact of both data parts, using
combinations of the Copy and Copy-freeze methods we describe here.

The size of a model (number of parameters) has an e�ect on both the compatibility of the model for practical
applications and on its generalization to unseen data. Unlike k-nearest-neighbors, the MLP’s size does not depend
on the size of the train set, and it does not require comparing a new example to training examples. An MLP can
out-perform a linear model, without increasing the size of the model. In fact, when the MLP’s bottleneck is narrow
enough and the total number of parameters is less than the linear model’s, it contributes to better generalization
of the trained model to unseen data. We see this e�ect in both the ExtraSensory Dataset and the ADL dataset
(section 6.6). In that respect, we can view the linear model (which assigns a separate weight parameter for each
combination of input-feature and output-label) as wasteful and prone to over-�tting. This is even more severe
in the LR system, when also the hyper-parameter is �tted separately for each label (adding �fty extra degrees
of freedom, compared to the single shared value of λ in the multi-task MLP). A multi-task MLP distributes the
limited resources (the parameters of the model — the inter-node connections and the node-biases) more e�ciently.
It can re-use common calculations instead of repeating them for each label, and ultimately capture more complex
mappings from features to labels by using less parameters than the linear model. Having a multi-task MLP with
smaller size than a linear model also means that it is �t for real in-the-wild usage. Applications can hold a fully
trained multi-task MLP on a smartphone or on a web-server, and have it recognize context in real time.

In addition, with proper training, the model can withstand missing sensors, in realistic situations like when
the person removes a watch or when location services are not available. This is important to make applications
work seamlessly in real life. Our experiments also demonstrate using data with missing sensors for training. This
encourages further collection of research data in-the-wild. Researchers can let many participants collect data
from their own various environments. Even if some participants never used a watch or often turned o� some
sensor, all the partial data can be combined to train a single model.
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7.1 Future Improvements
Despite the progressive steps we o�er here, further improvements are still recommended to promote research
in-the-wild that is even more ecologically valid. Semi-supervised methods can be used in order to exploit larger
sets of unlabeled data, which is cheap and easy to collect. Our formulation of the MLP optimization problem
makes a step in that direction, by allowing every example to contribute information about part of the labels, while
not a�ecting the cost of other labels. However, further additions can be made to take advantage of examples that
have no labels at all. That would allow collecting larger scale data with less e�ort (since acquiring labels is the
main challenge) and capturing more diverse in-the-wild cases. The reduced load on the participants would also
contribute to the authenticity of behavior.

Creative solutions for collecting labels in-the-wild will make it easier on participates. Self-reporting interfaces
may include a speech-to-text feature, enabling participants to easily say “From nine to ten this morning I was in
a meeting with my co-workers” or “I am starting to run now, at the beach, with my dog”. A free-text option will
allow people to add contexts beyond the provided menu of labels. A natural language processing component will
be required to clean the text or interpret spoken sentences. Such mechanisms will add richness but also increase
the sparseness of the labeling. This will be further reason to utilize a multi-task model that can combine partial
pieces of data together.

The ability to work with a subset of the sensors will facilitate control systems that dynamically select which
sensors to activate at any given time. Such systems will help conserve power and further promote real-time
applications on mobile devices.

8 CONCLUSIONS
Recognition of behavioral context in-the-wild poses many challenges. In this paper, we propose the usage of
multiple layer perceptron (MLP) for simultaneous recognition of many context labels. This multi-task model
improves performance, compared to logistic regression, thanks to nonlinearity, dimensionality reduction, and
shared hidden layers that are learned via supervised training.

The hidden representation may implicitly describe inter-label or sensor-to-label associations that “make sense”
or more illusive connections that are harder to interpret. All these internal “concepts” are learned from data
and not designed by a researcher — this helps avoid bias of human assumptions that may not generalize to the
real world. Of course, when the hidden layers are too wide, the MLP has too much �exibility and can learn
connections that are speci�c to the training set. To avoid this over-�tting, a good measure is the total number
of parameters in the model — an MLP with less parameters than a linear model is likely to be less prone to
over-�tting and generalize better than the linear model.

We show how to use the model together with data that has unbalanced and incomplete labeling, which is very
likely to happen when collecting data in-the-wild. We demonstrate how an MLP can be used to transfer a learned
representation from one set of labels to a new set of labels. This can help expand a system to new behavioral
aspects, even with limited amount of new data. The MLP can be resilient to missing sensors, which is a great
property for practical real-world systems.

The ability to learn a good model from unbalanced, sparse data — with cases of missing labels or missing
sensors — is encouraging and promotes further research e�orts with naturalistic behavior: data collection does
not have to be strict — it is �ne if each participant contributes a small part of the labels and if each example
contributes part of the sensors. This relaxation can reduce the load on participants, helping them maintain
natural behavior. These advantage, and future improvements, will promote medical, research, and commercial
applications that work smoothly in-the-wild.
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CONTEXT RECOGNITION IN-THE-WILD:
UNIFIED MODEL FOR MULTI-MODAL SENSORS AND MULTI-LABEL CLASSIFICATION
YONATAN VAIZMAN, NADIR WEIBEL, AND GERT LANCKRIET
SUPPLEMENTARY MATERIAL

S1 MISSING LABEL INFORMATION
We composed several heuristic rules to declare labels as missing. These rules may cause losing cases of labels
that were actually correct. However, these rules leave us with cleaner labels that we can be more con�dent in.

(1) There are examples for which the participant did not use the label reporting interface at all. For such
examples, we mark as “missing” all the labels, except labels that we adjusted based on location (“At home”,
“At the beach”, and “At main workplace”).

(2) We identify subsets of labels that represent mutually-exclusive alternatives that typically cover all the
possible options for a certain aspect:
• Body posture/movement: {“Lying down”, “Sitting”, “Standing”, “Walking”, “Running”, “Bicycling”}
• Phone position: {“Phone in pocket”, “Phone in hand”, “Phone in bag”, “Phone on table”}
• {“Indoors”, “Outside”}

For every example, we examine each of these label subsets. If none of the labels in the set was selected,
we mark all of them as missing for this example.
For instance: if an example is not annotated with any of the body posture/movement labels, it is most
likely that actually one of this subset’s labels is relevant, but the participant simply did not report it. We
do not want to regard all the body posture/movement labels as negative since one of them is correct, so it
is better (safer) to treat them all as missing for this example.

(3) For the phone position label subset, there were cases where a participant reported two of the labels
(e.g. “Phone in hand” and “Phone in pocket”). Most likely such cases were mistakes of label-reporting.
For these cases, we mark all the phone position labels as missing, since we do not know which of the
reported labels is the correct one.

(4) For every participant, we identify the subset of labels that were applied. We then mark all the other labels
as missing for all the participant’s examples. The reason behind this is that every participant typically
used a small subset of labels during the days of participation. For these labels, we can treat the participant
as an authority for when they are relevant and when they are not; but for the labels that the participant
never used, it is possible the participant was not aware of them in the menu or did not bother to regard
to them, so we should not rely on them to be actual negative examples.

Table S1 shows the counts of examples per label in the dataset, before and after applying the missing label
information (MLI). For most labels, the number of positive examples remained the same, and the MLI simply
narrowed down the collection of examples to be considered as negative.
Table S2 shows the e�ect of regarding to missing label information (MLI) in both training and testing of the
logistic recognition system. Introducing MLI to the performance metrics (counting only non-missing entries)
shows very slight increase in sensitivity (probably related to cases of wrong phone-position labels that are now
marked missing) and larger increase in speci�city (related to the many cases that were previously treated as
negative and now as missing). The e�ect of MLI on training is a combination of slight decrease in speci�city (a
small sacri�ce caused by getting rid of good negative examples) and larger increase in sensitivity, contributing to
an overall increase in balanced accuracy.
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without MLI with MLI without MLI with MLI
Label Pl N

p
l N n

l N
p
l N n

l Label Pl N
p
l N n

l N
p
l N n

l
1 Lying down 47 54359 122582 54359 119880 26 Cleaning 22 1839 175102 1839 90588
2 Sitting 50 82904 94037 82904 93215 27 Laundry 12 473 176468 473 54955
3 Walking 50 11892 165049 11892 164227 28 Washing dishes 17 851 176090 851 88053
4 Running 19 675 176266 675 93692 29 Watching TV 28 9412 167529 9412 100152
5 Bicycling 22 3523 173418 3523 79920 30 Sur�ng the internet 28 11641 165300 11641 98028
6 Sleeping 40 42920 134021 42920 124072 31 At a party 3 404 176537 404 25876
7 Lab work 8 2898 174043 2898 24384 32 At a bar 4 520 176421 520 19986
8 In class 13 2872 174069 2872 49400 33 At the beach 5 122 176819 122 20845
9 In a meeting 34 2904 174037 2904 124578 34 Singing 6 384 176557 384 15768

10 At main workplace 26 20382 156559 20382 80114 35 Talking 44 18976 157965 18976 139394
11 Indoors 51 107944 68997 107414 7099 36 Computer work 38 23692 153249 23692 125379
12 Outside 36 7629 169312 7099 80923 37 Eating 49 10169 166772 10169 158630
13 In a car 24 3635 173306 3635 104642 38 Toilet 33 1646 175295 1646 128368
14 On a bus 24 1185 175756 1185 98751 39 Grooming 25 1847 175094 1847 109353
15 Drive (I’m the driver) 24 5034 171907 5034 93827 40 Dressing 27 1308 175633 1308 117002
16 Drive (I’m a passenger) 19 1655 175286 1655 92384 41 At the gym 6 906 176035 906 32958
17 At home 50 83977 92964 83977 91065 42 Stairs - going up 17 399 176542 399 57797
18 At a restaurant 16 1320 175621 1320 87257 43 Stairs - going down 15 390 176551 390 59749
19 Phone in pocket 31 15301 161640 14658 67960 44 Elevator 8 124 176817 124 46631
20 Exercise 36 5384 171557 5384 143467 45 Standing 51 22766 154175 22766 153353
21 Cooking 33 2257 174684 2257 127535 46 At school 39 25840 151101 25840 120042
22 Shopping 18 896 176045 896 82705 47 Phone in hand 37 8595 168346 7535 79201
23 Strolling 8 434 176507 434 25234 48 Phone in bag 22 5589 171352 5201 55473
24 Drinking (alcohol) 10 864 176077 864 41955 49 Phone on table 43 70611 106330 69929 27237
25 Bathing - shower 27 1186 175755 1186 117321 50 With co-workers 17 4139 172802 4139 62410

51 With friends 25 12865 164076 12865 81005
Table S1. Label counts in the dataset. Counts out of the 176941 core examples (those that have all the six core sensors
available). Pl is the number of participants with positive examples of the label. Without MLI presents the counts of examples
(positive N

p
l and negative Nn

l ) before applying MLI. With MLI presents the counts of examples (positive N
p
l and negative Nn

l )
that remain after removing missing labels.

metrics without MLI metrics with MLI
accuracy sensitivity speci�city BA accuracy sensitivity speci�city BA

LR (trained without MLI) 0.846 0.533 0.851 0.692 0.846 0.534 0.863 0.698
LR (trained with MLI) 0.828 0.587 0.824 0.705 0.840 0.588 0.846 0.717

Table S2. Logistic regression performance. Training without and with missing labels information. Performance scores reported
with old and new metrics (without and with missing labels information, respectively).
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S2 RESULTS PER-LABEL
In order to provide a complete picture, and to allow readers to examine results for di�erent labels, we add
performance scores for each of the 51 labels in tables S3–S4. These tables include results with the LR baseline,
and with MLP with zero–two hidden layers. The last column refers to MLP that was trained with sensor-dropout.
These tables show a general trend of improvement for many labels when progressing from the baseline to an
MLP with two hidden layers. The improvement is more signi�cant for labels that started with relatively poor
performance, like “Bathing — shower”, “Cleaning”, “At the beach”, and “Elevator”.

LR linear (16) (16-16) (16-16)DO
1 Lying down 0.870 0.871 0.874 0.874 0.876
2 Sitting 0.757 0.764 0.767 0.765 0.770
3 Walking 0.797 0.801 0.810 0.808 0.808
4 Running 0.658 0.753 0.814 0.814 0.819
5 Bicycling 0.867 0.851 0.872 0.877 0.868
6 Sleeping 0.891 0.892 0.895 0.896 0.897
7 Lab work 0.828 0.798 0.845 0.843 0.842
8 In class 0.767 0.793 0.770 0.766 0.795
9 In a meeting 0.797 0.810 0.814 0.814 0.781

10 At main workplace 0.822 0.835 0.842 0.852 0.847
11 Indoors 0.867 0.879 0.888 0.884 0.891
12 Outside 0.856 0.869 0.876 0.881 0.885
13 In a car 0.864 0.867 0.869 0.859 0.864
14 On a bus 0.809 0.835 0.866 0.865 0.858
15 Drive (I’m the driver) 0.858 0.871 0.865 0.866 0.857
16 Drive (I’m a passenger) 0.834 0.819 0.853 0.868 0.860
17 At home 0.752 0.769 0.778 0.792 0.794
18 At a restaurant 0.770 0.839 0.820 0.833 0.846
19 Phone in pocket 0.778 0.789 0.795 0.798 0.802
20 Exercise 0.821 0.813 0.812 0.829 0.821
21 Cooking 0.712 0.722 0.728 0.737 0.747
22 Shopping 0.723 0.774 0.783 0.773 0.792
23 Strolling 0.649 0.687 0.745 0.764 0.759
24 Drinking (alcohol) 0.681 0.779 0.786 0.793 0.803
25 Bathing - shower 0.632 0.706 0.731 0.734 0.746

Average (labels 1–25) 0.786 0.807 0.820 0.823 0.825
Table S3. Balanced accuracy per label (part 1). LR is the baseline system with separate logistic regression trained per label.
The other columns refer to MLP with either 0 hidden layers (linear), or with the hidden layer dimensions specified in parenthesis.
The last column is for MLP trained with dropout (pdrop = 0.2).
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LR linear (16) (16-16) (16-16)DO
26 Cleaning 0.624 0.693 0.721 0.731 0.740
27 Laundry 0.648 0.758 0.682 0.662 0.674
28 Washing dishes 0.606 0.704 0.729 0.761 0.793
29 Watching TV 0.639 0.690 0.713 0.711 0.734
30 Sur�ng the internet 0.611 0.588 0.599 0.589 0.614
31 At a party 0.765 0.640 0.773 0.738 0.794
32 At a bar 0.783 0.671 0.791 0.845 0.863
33 At the beach 0.498 0.717 0.822 0.820 0.846
34 Singing 0.524 0.514 0.501 0.529 0.663
35 Talking 0.664 0.677 0.677 0.685 0.679
36 Computer work 0.705 0.724 0.732 0.730 0.727
37 Eating 0.657 0.666 0.672 0.677 0.669
38 Toilet 0.635 0.647 0.683 0.717 0.695
39 Grooming 0.632 0.667 0.698 0.702 0.735
40 Dressing 0.660 0.683 0.710 0.737 0.749
41 At the gym 0.651 0.683 0.712 0.800 0.779
42 Stairs - going up 0.595 0.708 0.757 0.755 0.731
43 Stairs - going down 0.609 0.707 0.751 0.753 0.728
44 Elevator 0.500 0.783 0.813 0.845 0.845
45 Standing 0.679 0.678 0.677 0.668 0.667
46 At school 0.739 0.748 0.751 0.754 0.751
47 Phone in hand 0.685 0.699 0.692 0.695 0.694
48 Phone in bag 0.753 0.752 0.746 0.764 0.744
49 Phone on table 0.789 0.804 0.797 0.802 0.801
50 With co-workers 0.657 0.720 0.752 0.755 0.778
51 With friends 0.608 0.613 0.617 0.636 0.635

Average (labels 26–51) 0.651 0.690 0.714 0.725 0.736
Table S4. Balanced accuracy per label (part 2). LR is the baseline system with separate logistic regression trained per label.
The other columns refer to MLP with either 0 hidden layers (linear), or with the hidden layer dimensions specified in parenthesis.
The last column is for MLP trained with dropout (pdrop = 0.2).
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